Minireview: The circadian clockwork of the suprachiasmatic nuclei--analysis of a cellular oscillator that drives endocrine rhythms.

نویسندگان

  • Elizabeth S Maywood
  • John S O'Neill
  • Johanna E Chesham
  • Michael H Hastings
چکیده

The secretion of hormones is temporally precise and periodic, oscillating over hours, days, and months. The circadian timekeeper within the suprachiasmatic nuclei (SCN) is central to this coordination, modulating the frequency of pulsatile release, maintaining daily cycles of secretion, and defining the time base for longer-term rhythms. This central clock is driven by cell-autonomous, transcriptional/posttranslational feedback loops incorporating Period (Per) and other clock genes. SCN neurons exist, however, within neural circuits, and an unresolved question is how SCN clock cells interact. By monitoring the SCN molecular clockwork using fluorescence and bioluminescence videomicroscopy of organotypic slices from mPer1::GFP and mPer1::luciferase transgenic mice, we show that interneuronal neuropeptidergic signaling via the vasoactive intestinal peptide (VIP)/PACAP2 (VPAC2) receptor for VIP (an abundant SCN neuropeptide) is necessary to maintain both the amplitude and the synchrony of clock cells in the SCN. Acute induction of mPer1 by light is, however, independent of VIP/VPAC2 signaling, demonstrating dissociation between cellular mechanisms mediating circadian control of the clockwork and those mediating its retinally dependent entrainment to the light/dark cycle. The latter likely involves the Ca(2+)/cAMP response elements of mPer genes, triggered by a MAPK cascade activated by retinal afferents to the SCN. In the absence of VPAC2 signaling, however, this cascade is inappropriately responsive to light during circadian daytime. Hence VPAC2-mediated signaling sustains the SCN cellular clockwork and is necessary both for interneuronal synchronization and appropriate entrainment to the light/dark cycle. In its absence, behavioral and endocrine rhythms are severely compromised.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clock-dependent and system-driven oscillators interact in the suprachiasmatic nuclei to pace mammalian circadian rhythms

Circadian clocks drive biological rhythms with a period of approximately 24 hours and keep in time with the outside world through daily resetting by environmental cues. While this external entrainment has been extensively investigated in the suprachiasmatic nuclei (SCN), the role of internal systemic rhythms, including daily fluctuations in core temperature or circulating hormones remains debat...

متن کامل

Postnatal ontogenesis of the circadian clock within the rat liver.

In mammals, the circadian oscillator within the suprachiasmatic nuclei (SCN) entrains circadian clocks in numerous peripheral tissues. Central and peripheral clocks share a molecular core clock mechanism governing daily time measurement. In the rat SCN, the molecular clockwork develops gradually during postnatal ontogenesis. The aim of the present work was to elucidate when during ontogenesis t...

متن کامل

Circadian clocks: regulators of endocrine and metabolic rhythms.

Daily and seasonal rhythms in the endocrine system are co-ordinated by a hypothalamic pacemaker, the suprachiasmatic nuclei (SCN) that is synchronised to solar time by direct retinal afferents. Individual SCN neurons are circadian clocks, their intrinsic oscillator consisting of a series of interlinked autoregulatory transcriptional/post-translational feedback loops incorporating Period (Per) a...

متن کامل

Brain circadian oscillators and redox regulation in mammals.

SIGNIFICANCE Functional states of organisms vary rhythmically with a period of about a day (i.e., circadian). This endogenous dynamic is shaped by day-night alternations in light and energy. Mammalian circadian rhythms are orchestrated by the hypothalamic suprachiasmatic nucleus (SCN), a brain region specialized for timekeeping. These autonomous ~24-h oscillations are cell-based, requiring tran...

متن کامل

Cryptochrome-Deficient Mice Lack Circadian Electrical Activity in the Suprachiasmatic Nuclei

The mammalian master clock driving circadian rhythmicity in physiology and behavior resides within the suprachiasmatic nuclei (SCN) of the anterior hypothalamus. Circadian rhythms are generated by a set of clock genes via intertwined negative and positive autoregulatory transcription-translation feedback loops. The Cryptochrome 1 and 2 genes are indispensable for molecular core oscillator funct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Endocrinology

دوره 148 12  شماره 

صفحات  -

تاریخ انتشار 2007